Algorithmen Projektarbeit: Unterschied zwischen den Versionen
(20 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
[[Kategorie:Informatik]] | [[Kategorie:Informatik]] | ||
[[Kategorie:Algorithmen]] | [[Kategorie:Algorithmen]] | ||
Auf dieser Seite wird alles Wichtige für die Projektarbeit im Projektkurs Algorithmen im Schuljahr 18/19 zusammengefasst. | |||
=Anforderungen an die Projektarbeit= | =Anforderungen an die Projektarbeit= | ||
Zeile 19: | Zeile 20: | ||
## Average Case | ## Average Case | ||
## (wenn möglich:) Worst Case | ## (wenn möglich:) Worst Case | ||
## ''(für Simulationen:) Genauigkeit der Simulation statistisch abschätzen.'' | |||
# '''Vergleich Theorie - Praxis''' | # '''Vergleich Theorie - Praxis''' | ||
## ggf.: welche Probleme ergaben sich? | ## ggf.: welche Probleme ergaben sich? | ||
## ggf.: Warum ist der Algorithmus in der Praxis langsamer/schneller als in der Theorie? | ## ggf.: Warum ist der Algorithmus in der Praxis langsamer/schneller als in der Theorie? | ||
# Resümee | # '''Resümee''' | ||
## z.B.: Verbesserungsvorschläge | ## z.B.: Verbesserungsvorschläge | ||
## Bedeutung in der Praxis | ## Bedeutung in der Praxis | ||
## andere Optionen für das Problem | ## andere Optionen für das Problem | ||
# Anhang | # '''Anhang''' | ||
## Programmquelltext | ## Programmquelltext | ||
Zeile 32: | Zeile 34: | ||
Für die Projektarbeit gelten dieselben formalen Anforderungen wie für eine Facharbeit. | Für die Projektarbeit gelten dieselben formalen Anforderungen wie für eine Facharbeit. | ||
Die formalen Anforderungen finden sich hier: [http://sibi-honnef.de/ | Die formalen Anforderungen finden sich hier: [http://www.sibi-honnef.de/die-schule/oberstufe SIBI-Homepage: Oberstufe] | ||
''Außerdem gibt es auf dieser Seite auch Vorlagen für die Formatierung einer Arbeit! (Sowohl MS-Word als auch LibreOffice-Writer.) Am einfachsten lädt man sich die Vorlage runter und schreibt darin seine Arbeit - dann ist die Formatierung "automatisch" richtig.'' | |||
==Teamarbeit?!== | |||
* Man kann - nach Absprache mit Herrn Kaibel - '''auch zu zweit''' ein Projekt bearbeiten und abgeben.<br/> | |||
'' | * '''Voraussetzung''' dafür ist aber, dass das Team halbwegs "balanciert" ist; es darf nicht so sein, dass eine(r) die ganze Programmierarbeit macht. | ||
* Die Projektarbeit soll ausführlicher (d.h. mindestens 1,5mal so lang) sein. | |||
* In der Projektarbeit kennzeichnet dann jeweils einer für bestimmte Teile verantwortlich. | |||
=Themen für die Projektarbeit= | =Themen für die Projektarbeit= | ||
Hier werden einige Themen vorgeschlagen. Nach Absprache sind natürlich auch ganz andere Themen möglich! | Hier werden einige Themen vorgeschlagen. Nach Absprache sind natürlich auch ganz andere Themen möglich! | ||
# ''' | |||
Als Ideengeber eignet sich u.a. die Seite '''[https://www-i1.informatik.rwth-aachen.de/~algorithmus/liste.php Algorithmus der Woche (RWTH Aachen)]'''.<br/>Einige der Algorithmen werden unten auch genannt. | |||
# '''Scratch:'''<br/>Die folgenden Probleme lassen sich am besten mit Scratch bearbeiten, weil man eine grafische Oberfläche braucht. | |||
## '''Planetenbahnen zeichnen:'''<br/>''Aus den Gesetzen der Schwerkraft kann man Näherungen gewinnen, so dass man (näherungsweise) Schritt für Schritt eine Planetenbahn zeichnen kann.'' <br/>''[https://de.wikipedia.org/wiki/Newtonsches_Gravitationsgesetz Gravitationsgesetz(Wikipedia)]'' | |||
## '''(SEHR SCHWER:) Eine Doppelfeder simulieren:''' <br/>''Aus physikalischen Gesetzen das Verhalten einer Doppelfeder näherungsweise darstellen.'' | |||
# '''Simulationen:'''<br/>''Bei Simulationen gehört zur Projektarbeit auch die Abschätzung der Güte der Simulation, das heißt z.B.: Wie groß ist das Konfidenzintervall (von 99%) für das tatsächliche Verhalten des simulierten Ereignisses? Oder: wie oft muss man simulieren, damit die Abweichung vom tatsächlichen Ergebnis (mit einer Wahrscheinlichkeit von 99%) maximal 0,1% beträgt?''<br/>''Dafür braucht man etwas Statistik, die in aller Kürze hier erklärt wird: [[Algorithmen:_Mathematik]].'' | |||
## '''Kniffel-Berater:'''<br/>''Was ist eine optimale Strategie, wenn man nur den oberen Bereich (1-6) füllen will? Wie viele Punkte kann man im Schnitt erwarten?'' | |||
## '''Poker-Berater:'''<br/>''Welche Chancen hat man mit einem gegebenen Blatt, das Spiel gegen 3 weitere Spieler zu gewinnen?'' | |||
## '''Risiko-Berater:'''<br/>''Wie viele Armeen bleiben übrig, wenn man z.B. mit 23 Armeen 20 Armeen des Gegners angreift?'' | |||
## ''VIELE andere Simulationen sind denkbar!!!''' | |||
# '''Divide-And-Conquer Algorithmen''' | |||
## Nullstellenbestimmung der Funktion f(x) = sin(x) mit Divide-And-Conquer | |||
# '''Travelling Salesman Problem (TSP)'''<br>z.B. Nearest-Insertion-Heuristik und Farthest-Insertion-Heuristik zum Lösen des TSP für viele (d.h. mehr als 20) Städte<br>[https://de.wikipedia.org/wiki/Problem_des_Handlungsreisenden#Asymmetrisches_und_symmetrisches_TSP Wikipedia: Problem des Handlungsreisenden]<br>[https://de.wikipedia.org/wiki/Nearest-Neighbor-Heuristik Wikipedia: Nearest-Neighbor-Heuristik] | |||
# '''Fehler-Erkennungs-Algorithmen:'''<br/>zwei ausgewählte darstellen und an Beispielen testen.<br/>[https://de.wikipedia.org/wiki/Fehlerkorrekturverfahren Fehlerkorrekturverfahren(Wikipedia)] | # '''Fehler-Erkennungs-Algorithmen:'''<br/>zwei ausgewählte darstellen und an Beispielen testen.<br/>[https://de.wikipedia.org/wiki/Fehlerkorrekturverfahren Fehlerkorrekturverfahren(Wikipedia)] | ||
# '''Aus einer Liste von 1.000.000 Codes möglichst schnell den häufigsten finden.'''<br/>Dafür braucht man Hashmaps, d.h. das Hashing-Verfahren muss erklärt werden. | |||
# '''Aus einer Liste von 1.000.000 Codes möglichst schnell den häufigsten finden.'''<br/>Dafür braucht man Hashmaps, d.h. das Hashing-Verfahren muss erklärt werden. | # '''Backtracking:'''<br/>Backtracking ist eine Form des systematischen Ausprobierens. Vergleiche [[Backtracking]] | ||
# ''' | ## '''Graphen so einfärben, dass benachbarte Knoten nicht die gleiche Farbe haben: Wie viele Farben braucht man dafür?'''<br/>[https://en.wikipedia.org/wiki/Graph_coloring Wikipedia (en): Graph Coloring] | ||
# ''' | ## '''Springerproblem:'''<br/>Der Springer soll auf einem Schachbrett alle Felder ab-"springen", ohne dabei 2x auf dasselbe Feld zu kommen. [https://de.wikipedia.org/wiki/Springerproblem Springerproblem (Wikipedia)] | ||
# '''Rucksackproblem:''' <br> | ## '''Rucksackproblem:'''<br/>Vergleich der Laufzeit und der Genauigkeit eines Backtracking- und eines [https://en.wikipedia.org/wiki/Greedy_algorithm Greedy-Algorithmus] | ||
# ''' | ## '''Travelling-Salesman-Problem:'''<br/>Vergleich der Laufzeit und der Genauigkeit eines Backtracking- und eines [https://en.wikipedia.org/wiki/Greedy_algorithm Greedy-Algorithmus] | ||
# '''Konvexe Hülle:''' <br/>Die Konvexe Hülle (d.h. "Umrandung") einer Punktmenge möglichst schnell bestimmen. | # '''Konvexe Hülle:''' <br/>Die Konvexe Hülle (d.h. "Umrandung") einer Punktmenge möglichst schnell bestimmen. | ||
# '''Optimale Verkehrsplanung:''' <br>Maximale Flüsse<br>[http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo23.php Algorithmus der Woche] | # '''Optimale Verkehrsplanung:''' <br>Maximale Flüsse<br>[http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo23.php Algorithmus der Woche] | ||
# '''Minimale Spannbäume berechnen mit dem Algorithmus von Prim'''<br/>[https://de.wikipedia.org/wiki/Algorithmus_von_Prim Algorithmus-von-Prim-(Wikipedia)] | # '''Ein Stromnetz optimal planen (Prim):'''<br/>'''Minimale Spannbäume berechnen mit dem Algorithmus von Prim'''<br/>[https://de.wikipedia.org/wiki/Algorithmus_von_Prim Algorithmus-von-Prim-(Wikipedia)] | ||
# '''Minimale Spannbäume berechnen mit dem Algorithmus von Kruskal'''<br/>[https://de.wikipedia.org/wiki/Algorithmus_von_Kruskal Algorithmus-von-Kruskal-(Wikipedia)] | # '''Ein Stromnetz optimal planen (Kruskal):'''<br/>'''Minimale Spannbäume berechnen mit dem Algorithmus von Kruskal'''<br/>[https://de.wikipedia.org/wiki/Algorithmus_von_Kruskal Algorithmus-von-Kruskal-(Wikipedia)] | ||
# '''Suchen in O(1):'''<br>Hashing <br>[https://de.wikipedia.org/wiki/Hashfunktion Wikipedia: Hash-Funktion] <br>[http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo34.php Algorithmus der Woche] | # '''Suchen in O(1):'''<br>Hashing <br>[https://de.wikipedia.org/wiki/Hashfunktion Wikipedia: Hash-Funktion] <br>[http://www-i1.informatik.rwth-aachen.de/~algorithmus/algo34.php Algorithmus der Woche] | ||
# '''Numerische Verfahren''':<br>Ziel der Numerik ist es ''"das eigentlich Unberechenbare zu berechnen, und das in Lichtgeschwindigkeit."''<br>Es gibt SEHR unterschiedliche numerische Verfahren für SEHR VIELE unterschiedliche Problemstellungen<br>[https://de.wikipedia.org/wiki/Liste_numerischer_Verfahren Wikipedia: Liste numerischer Verfahren] | # '''Numerische Verfahren''':<br>Ziel der Numerik ist es ''"das eigentlich Unberechenbare zu berechnen, und das in Lichtgeschwindigkeit."''<br>Es gibt SEHR unterschiedliche numerische Verfahren für SEHR VIELE unterschiedliche Problemstellungen<br>[https://de.wikipedia.org/wiki/Liste_numerischer_Verfahren Wikipedia: Liste numerischer Verfahren] | ||
# ''' | ## '''Integrale näherungsweise berechnen mit Trapezen bzw. mit Rechtecken:'''<br/>Vergleich der Konvergenzgeschwindigkeit. | ||
## '''Pi (oder die Eulersche Zahl e) berechnen mit einem geeigneten Algorithmus:''' <br/>Zwei geeignete Algorithmen recherchieren, programmieren und auf Genauigkeit vergleichen. | |||
## '''Ternary Search: Die Suche nach einem Maximum in einer Funktion, die überall rechts gekrümmt ist.'''<br/>[https://en.wikipedia.org/wiki/Ternary_search Wikipedia (en): Ternary search] | |||
## '''Welche Funktion erfüllt die Differentialgleichung f''(x) = - f(x) bzw. f'(x) = x + f(x) ?'''<br>Für Differentialgleichungen dieser Art gibt es numerische Verfahren, die (gute!) näherungsweise Lösungen ausgeben.<br>[https://de.wikipedia.org/wiki/Gewöhnliche_Differentialgleichung#Numerische_Verfahren Wikipedia: Numerische Verfahren für gewöhnliche Differentialgleichungen]<br>''Man kann das auch mit Excel angehen!'' | |||
## '''Ein Gleichungssystem mit 100 Variablen numerisch lösen.''' | |||
## '''Die Fläche unter der Gaußschen Glockenkurve <math>f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}</math> näherungsweise bestimmen.'''<br/>''Auch Excel ist möglich'' | |||
# '''Bestimmung des kürzesten Weges von A nach B in einem Graph mit dem Algorithmus von Bellman-Ford:'''<br/>[https://de.wikipedia.org/wiki/Bellman-Ford-Algorithmus Wikipedia: Bellman-Ford-Algorithmus] | |||
# '''Maximum Subarray Problem''': Aus einer Liste von Zahlen die Teilliste herausfinden, deren Summe maximal ist.'''<br/>[https://en.wikipedia.org/wiki/Maximum_subarray_problem Wikipedia (en): Maximum subarray problem] | |||
# '''Longest common subsequence:'''<br/>Gegeben sind zwei Listen von Wörtern. Finde die längste Teilliste, die in beiden Listen (in der entsprechenden Reihenfolge enthalten ist!'''<br/>[https://en.wikipedia.org/wiki/Longest_common_subsequence_problem#Example Wikipedia (en): longest common subsequence problem] | |||
# '''Zuordnungsproblem:'''<br/>90 Taxis sind über eine Stadt verteilt. Jetzt bestellen 90 Kunden ein Taxi. Welches Taxi fährt zu welchem Kunden, so dass die Kunden insgesamt am kürzesten warten müssen?<br/>[https://de.wikipedia.org/wiki/Zuordnungsproblem Wikipedia: Zuordnungsproblem] | |||
# '''Vergleichbasiertes Ranking:'''<br> Gegeben sind z.B. 100 Marken. Die Nutzer sollen immer 2 von ihnen vergleichen. Wie kann daraus eine Bewertung der Marken erstellen?<br/>Man braucht dafür den Algorithmus der ELO-Punkte im Schach.<br/>Marc Zuckerberg verwendete diesen Algorithmus für seine (skandalträchtige) Software ''Facemash''. | |||
# '''Monte-Carlo- und Las-Vegas-Algorithmen:'''<br/>Das sind Algorithmen, die Zufall nutzen, um eine beste oder näherungsweise beste Lösung zu finden. | |||
## '''Der Miller-Rabin-Test'''<br/>findet Primzahlen mit mehr als 500 Stellen. | |||
## '''Das Hubschrauber-Problem:'''<br/>Es gibt 500 weit verstreute Häuser. Wo sollte der Standort für einen Hubschrauber sein, damit jedes Haus möglichst schnell erreicht werden kann?<br/>''"Kleinster umschließender Kreis", vgl. "42. Algorithmus der Woche".'' | |||
# '''Wie schwimmt man am schnellsten quer durch den Rhein?'''<br/>''Das Problem ist, dass die Strömung in der Mitte stärker wird, d.h. ab wann sollte man einfach "quer" schwimmen (und dann am Strand wieder zurücklaufen).<br/>Folgende Grundannahmen: Der Rhein ist 400m breit. Die Strömungsgeschwindigkeit (in m/s) wird durch folgende Funktion gegeben: f(x) = -(1/20000)*x<sup>2</sup> + (1/50)*x (D.h. in der Rheinmitte ist die Strömung dann 2m/s.) Der Schwimmer hat eine Geschwindigkeit von 1,5m/s (das schafft ein Leistungssportler auf 400m). Wenn er am Ufer zurücklaufen muss, ist seine Geschwindigkeit auch 1,5m/s.'' | |||
# '''Wie macht man die beste Ausbeute an Glücksspielautomaten?''' <br>Das Multi-Armed-Bandit Problem: <br>[https://en.wikipedia.org/wiki/Multi-armed_bandit Wikipedia (en): Multi-Armed-Bandit] | |||
# ''(Das folgende Problem ist ein rein theoretisches, d.h. hier wird gar nicht programmiert!)''<br/>'''P-NP-Problem am Beispiel: ''Lässt sich eine Landkarte mit 3 Farben einfärben?'''''<br>''Zur Klasse '''P''' gehören alle Entscheidungsprobleme, die in polynomieller Zeit '''gelöst''' werden können.<br>Zur Klasse '''NP''' gehören alle Entscheidungsprobleme, bei denen die Antwort "JA" in polynomieller Zeit '''verifiziert''' werden kann.'' <br>Es soll aufgezeigt werden, dass das 3-Farben-Problem nicht zur Klasse P, aber zur Klasse NP gehört. <br>Außerdem soll die Bedeutung von NP-vollständigen Problemen für die Algorithmik an diesem Beispiel erläutert werden.<br>''Das ist eine rein theoretische Arbeit!''<br>[https://de.wikipedia.org/wiki/Färbung_(Graphentheorie) Wikipedia: Färbung eines Graphen]<br>[http://www14.in.tum.de/lehre/2008WS/ea/EA-12.pdf Erläuterung von P und NP]<br>[https://de.wikipedia.org/wiki/Karps_21_NP-vollständige_Probleme Wikipedia: 21 NP-vollständige Probleme] |
Aktuelle Version vom 1. März 2022, 07:34 Uhr
Auf dieser Seite wird alles Wichtige für die Projektarbeit im Projektkurs Algorithmen im Schuljahr 18/19 zusammengefasst.
Anforderungen an die Projektarbeit
mögliche Gliederung
In der Regel umfasst die Projektarbeit die folgenden Teile:
- Abstract
Im Abstract wird die Arbeit in ca. 1/2 Seite zusammengefasst, d.h.: es werden in aller Kürze die Fragestellung der Arbeit, die Ergebnisse und ihre Relevanz dargestellt.
Das Abstract dient dazu, dass man als Leser schnell erkennen kann, ob es sich - im Hinblick auf eigene Forschungsinteressen - lohnt, die ganze Arbeit zu lesen.
Das Abstract steht immer am Anfang der Arbeit, aber geschrieben wird es als Letztes!. - Einleitung
Die Einleitung führt zum Thema hin, z.B. indem die Bedeutung des Algorithmus aufgezeigt wird. - Beschreibung des Algorithmus
- Zweck
- Funktionsweise
- Vorteile / Nachteile
- Laufzeitabschätzung / Genauigkeitsabschätzung für n Elemente
- Average Case
- Worst Case
- Quelltext des Algorithmus, gut erläutert
Hier wird nicht die ganze Programmierung aufgeführt, sondern nur die für den Algorithmus zentralen Teile der Programmierung!
Die restliche Programmierung kommt in den Anhang. - Praxistest
Dokumentation von Beispielläufen des Algorithmus- Average Case
- (wenn möglich:) Worst Case
- (für Simulationen:) Genauigkeit der Simulation statistisch abschätzen.
- Vergleich Theorie - Praxis
- ggf.: welche Probleme ergaben sich?
- ggf.: Warum ist der Algorithmus in der Praxis langsamer/schneller als in der Theorie?
- Resümee
- z.B.: Verbesserungsvorschläge
- Bedeutung in der Praxis
- andere Optionen für das Problem
- Anhang
- Programmquelltext
formale Anforderungen
Für die Projektarbeit gelten dieselben formalen Anforderungen wie für eine Facharbeit.
Die formalen Anforderungen finden sich hier: SIBI-Homepage: Oberstufe
Außerdem gibt es auf dieser Seite auch Vorlagen für die Formatierung einer Arbeit! (Sowohl MS-Word als auch LibreOffice-Writer.) Am einfachsten lädt man sich die Vorlage runter und schreibt darin seine Arbeit - dann ist die Formatierung "automatisch" richtig.
Teamarbeit?!
- Man kann - nach Absprache mit Herrn Kaibel - auch zu zweit ein Projekt bearbeiten und abgeben.
- Voraussetzung dafür ist aber, dass das Team halbwegs "balanciert" ist; es darf nicht so sein, dass eine(r) die ganze Programmierarbeit macht.
- Die Projektarbeit soll ausführlicher (d.h. mindestens 1,5mal so lang) sein.
- In der Projektarbeit kennzeichnet dann jeweils einer für bestimmte Teile verantwortlich.
Themen für die Projektarbeit
Hier werden einige Themen vorgeschlagen. Nach Absprache sind natürlich auch ganz andere Themen möglich!
Als Ideengeber eignet sich u.a. die Seite Algorithmus der Woche (RWTH Aachen).
Einige der Algorithmen werden unten auch genannt.
- Scratch:
Die folgenden Probleme lassen sich am besten mit Scratch bearbeiten, weil man eine grafische Oberfläche braucht.- Planetenbahnen zeichnen:
Aus den Gesetzen der Schwerkraft kann man Näherungen gewinnen, so dass man (näherungsweise) Schritt für Schritt eine Planetenbahn zeichnen kann.
Gravitationsgesetz(Wikipedia) - (SEHR SCHWER:) Eine Doppelfeder simulieren:
Aus physikalischen Gesetzen das Verhalten einer Doppelfeder näherungsweise darstellen.
- Planetenbahnen zeichnen:
- Simulationen:
Bei Simulationen gehört zur Projektarbeit auch die Abschätzung der Güte der Simulation, das heißt z.B.: Wie groß ist das Konfidenzintervall (von 99%) für das tatsächliche Verhalten des simulierten Ereignisses? Oder: wie oft muss man simulieren, damit die Abweichung vom tatsächlichen Ergebnis (mit einer Wahrscheinlichkeit von 99%) maximal 0,1% beträgt?
Dafür braucht man etwas Statistik, die in aller Kürze hier erklärt wird: Algorithmen:_Mathematik.- Kniffel-Berater:
Was ist eine optimale Strategie, wenn man nur den oberen Bereich (1-6) füllen will? Wie viele Punkte kann man im Schnitt erwarten? - Poker-Berater:
Welche Chancen hat man mit einem gegebenen Blatt, das Spiel gegen 3 weitere Spieler zu gewinnen? - Risiko-Berater:
Wie viele Armeen bleiben übrig, wenn man z.B. mit 23 Armeen 20 Armeen des Gegners angreift? - VIELE andere Simulationen sind denkbar!!!'
- Kniffel-Berater:
- Divide-And-Conquer Algorithmen
- Nullstellenbestimmung der Funktion f(x) = sin(x) mit Divide-And-Conquer
- Travelling Salesman Problem (TSP)
z.B. Nearest-Insertion-Heuristik und Farthest-Insertion-Heuristik zum Lösen des TSP für viele (d.h. mehr als 20) Städte
Wikipedia: Problem des Handlungsreisenden
Wikipedia: Nearest-Neighbor-Heuristik - Fehler-Erkennungs-Algorithmen:
zwei ausgewählte darstellen und an Beispielen testen.
Fehlerkorrekturverfahren(Wikipedia) - Aus einer Liste von 1.000.000 Codes möglichst schnell den häufigsten finden.
Dafür braucht man Hashmaps, d.h. das Hashing-Verfahren muss erklärt werden. - Backtracking:
Backtracking ist eine Form des systematischen Ausprobierens. Vergleiche Backtracking- Graphen so einfärben, dass benachbarte Knoten nicht die gleiche Farbe haben: Wie viele Farben braucht man dafür?
Wikipedia (en): Graph Coloring - Springerproblem:
Der Springer soll auf einem Schachbrett alle Felder ab-"springen", ohne dabei 2x auf dasselbe Feld zu kommen. Springerproblem (Wikipedia) - Rucksackproblem:
Vergleich der Laufzeit und der Genauigkeit eines Backtracking- und eines Greedy-Algorithmus - Travelling-Salesman-Problem:
Vergleich der Laufzeit und der Genauigkeit eines Backtracking- und eines Greedy-Algorithmus
- Graphen so einfärben, dass benachbarte Knoten nicht die gleiche Farbe haben: Wie viele Farben braucht man dafür?
- Konvexe Hülle:
Die Konvexe Hülle (d.h. "Umrandung") einer Punktmenge möglichst schnell bestimmen. - Optimale Verkehrsplanung:
Maximale Flüsse
Algorithmus der Woche - Ein Stromnetz optimal planen (Prim):
Minimale Spannbäume berechnen mit dem Algorithmus von Prim
Algorithmus-von-Prim-(Wikipedia) - Ein Stromnetz optimal planen (Kruskal):
Minimale Spannbäume berechnen mit dem Algorithmus von Kruskal
Algorithmus-von-Kruskal-(Wikipedia) - Suchen in O(1):
Hashing
Wikipedia: Hash-Funktion
Algorithmus der Woche - Numerische Verfahren:
Ziel der Numerik ist es "das eigentlich Unberechenbare zu berechnen, und das in Lichtgeschwindigkeit."
Es gibt SEHR unterschiedliche numerische Verfahren für SEHR VIELE unterschiedliche Problemstellungen
Wikipedia: Liste numerischer Verfahren- Integrale näherungsweise berechnen mit Trapezen bzw. mit Rechtecken:
Vergleich der Konvergenzgeschwindigkeit. - Pi (oder die Eulersche Zahl e) berechnen mit einem geeigneten Algorithmus:
Zwei geeignete Algorithmen recherchieren, programmieren und auf Genauigkeit vergleichen. - Ternary Search: Die Suche nach einem Maximum in einer Funktion, die überall rechts gekrümmt ist.
Wikipedia (en): Ternary search - Welche Funktion erfüllt die Differentialgleichung f(x) = - f(x) bzw. f'(x) = x + f(x) ?
Für Differentialgleichungen dieser Art gibt es numerische Verfahren, die (gute!) näherungsweise Lösungen ausgeben.
Wikipedia: Numerische Verfahren für gewöhnliche Differentialgleichungen
Man kann das auch mit Excel angehen! - Ein Gleichungssystem mit 100 Variablen numerisch lösen.
- Die Fläche unter der Gaußschen Glockenkurve [math]\displaystyle{ f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2} }[/math] näherungsweise bestimmen.
Auch Excel ist möglich
- Integrale näherungsweise berechnen mit Trapezen bzw. mit Rechtecken:
- Bestimmung des kürzesten Weges von A nach B in einem Graph mit dem Algorithmus von Bellman-Ford:
Wikipedia: Bellman-Ford-Algorithmus - Maximum Subarray Problem: Aus einer Liste von Zahlen die Teilliste herausfinden, deren Summe maximal ist.
Wikipedia (en): Maximum subarray problem - Longest common subsequence:
Gegeben sind zwei Listen von Wörtern. Finde die längste Teilliste, die in beiden Listen (in der entsprechenden Reihenfolge enthalten ist!
Wikipedia (en): longest common subsequence problem - Zuordnungsproblem:
90 Taxis sind über eine Stadt verteilt. Jetzt bestellen 90 Kunden ein Taxi. Welches Taxi fährt zu welchem Kunden, so dass die Kunden insgesamt am kürzesten warten müssen?
Wikipedia: Zuordnungsproblem - Vergleichbasiertes Ranking:
Gegeben sind z.B. 100 Marken. Die Nutzer sollen immer 2 von ihnen vergleichen. Wie kann daraus eine Bewertung der Marken erstellen?
Man braucht dafür den Algorithmus der ELO-Punkte im Schach.
Marc Zuckerberg verwendete diesen Algorithmus für seine (skandalträchtige) Software Facemash. - Monte-Carlo- und Las-Vegas-Algorithmen:
Das sind Algorithmen, die Zufall nutzen, um eine beste oder näherungsweise beste Lösung zu finden.- Der Miller-Rabin-Test
findet Primzahlen mit mehr als 500 Stellen. - Das Hubschrauber-Problem:
Es gibt 500 weit verstreute Häuser. Wo sollte der Standort für einen Hubschrauber sein, damit jedes Haus möglichst schnell erreicht werden kann?
"Kleinster umschließender Kreis", vgl. "42. Algorithmus der Woche".
- Der Miller-Rabin-Test
- Wie schwimmt man am schnellsten quer durch den Rhein?
Das Problem ist, dass die Strömung in der Mitte stärker wird, d.h. ab wann sollte man einfach "quer" schwimmen (und dann am Strand wieder zurücklaufen).
Folgende Grundannahmen: Der Rhein ist 400m breit. Die Strömungsgeschwindigkeit (in m/s) wird durch folgende Funktion gegeben: f(x) = -(1/20000)*x2 + (1/50)*x (D.h. in der Rheinmitte ist die Strömung dann 2m/s.) Der Schwimmer hat eine Geschwindigkeit von 1,5m/s (das schafft ein Leistungssportler auf 400m). Wenn er am Ufer zurücklaufen muss, ist seine Geschwindigkeit auch 1,5m/s. - Wie macht man die beste Ausbeute an Glücksspielautomaten?
Das Multi-Armed-Bandit Problem:
Wikipedia (en): Multi-Armed-Bandit - (Das folgende Problem ist ein rein theoretisches, d.h. hier wird gar nicht programmiert!)
P-NP-Problem am Beispiel: Lässt sich eine Landkarte mit 3 Farben einfärben?
Zur Klasse P gehören alle Entscheidungsprobleme, die in polynomieller Zeit gelöst werden können.
Zur Klasse NP gehören alle Entscheidungsprobleme, bei denen die Antwort "JA" in polynomieller Zeit verifiziert werden kann.
Es soll aufgezeigt werden, dass das 3-Farben-Problem nicht zur Klasse P, aber zur Klasse NP gehört.
Außerdem soll die Bedeutung von NP-vollständigen Problemen für die Algorithmik an diesem Beispiel erläutert werden.
Das ist eine rein theoretische Arbeit!
Wikipedia: Färbung eines Graphen
Erläuterung von P und NP
Wikipedia: 21 NP-vollständige Probleme