Landau-Klassen

Aus SibiWiki
Version vom 5. Juni 2014, 08:17 Uhr von Akaibel (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{| class="wikitable" |- ! Notation ! Bedeutung ! Anschauliche Erklärung ! Beispiele für Laufzeiten |- |<b>f ∈ O(1)</b> |<b>f</b> ist beschränkt |<b>f</…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen
Notation Bedeutung Anschauliche Erklärung Beispiele für Laufzeiten
f ∈ O(1) f ist beschränkt f überschreitet einen konstanten Wert nicht (unabhängig vom Wert des Arguments). Nachschlagen des n-ten Elementes in einem Feld.
f ∈ O(log n) f wächst logarithmisch f wächst ungefähr um einen konstanten Betrag, wenn sich das Argument verdoppelt.

Die Basis des Logarithmus ist dabei egal.

Binäre Suche im sortierten Feld mit n Einträgen
f ∈ O(n) linear f wächst ungefähr auf das Doppelte, wenn sich das Argument verdoppelt. Suche im unsortierten Feld mit n Einträgen (Bsp. Lineare Suche)
f ∈

O(n ∗ log n)

f hat super-lineares Wachstum Fortgeschrittenere Algorithmen zum Sortieren von n Zahlen

Mergesort, Quicksort (im Average Case)

f ∈ O(n2) quadratisch f wächst ungefähr auf das Vierfache, wenn sich das Argument verdoppelt Einfache Algorithmen zum Sortieren von n Zahlen

Selectionsort

f ∈ O(n!) f wächst mit der Fakultät f wächst ungefähr auf das (n+1)-fache, wenn sich das Argument um eins erhöht. Problem des Handlungsreisenden