Potenzmengenkonstruktion: Unterschied zwischen den Versionen
Zeile 60: | Zeile 60: | ||
|} | |} | ||
''Hinweis: <math>\emptyset</math> ist die leere Menge.'' | ''Hinweis: <math>\emptyset</math> ist die leere Menge.'' | ||
Man sieht also:<br/> | Man sieht also:<br/> | ||
'''Mit jedem Übergang kann man mehrere Zustände erreichen; diese werden als Menge von Zuständen angegeben.''' | '''Mit jedem Übergang kann man mehrere Zustände erreichen; diese werden als <u>Menge</u> von Zuständen angegeben.''' | ||
===Konstruktion des zugehörigen DEA=== | ===Konstruktion des zugehörigen DEA=== |
Version vom 11. Februar 2019, 16:30 Uhr
Schon die Überschrift verspricht eine komplizierte, mühsame und langwierige Prozedur - und so ist es leider auch.
Aber das Zentralabitur will die Informatik-Schüler in NRW trotzdem damit beglücken...
Wozu?
Mithilfe der Potenzmengenkonstruktion kann man einen Deterministischen Endlicher Automat (DEA)in einen Nicht-deterministischen endlichen Automaten (NEA) überführen.
Grundidee
Die Grundidee ist reichlich abstrakt und hier - mit Absicht - sehr kurz gehalten. Man kann das sowieso erst verstehen, wenn man mal ein Beispiel durchexerziert hat...
Der NEA kann sich bei gleicher Zeichenfolge "zeitgleich" in mehreren verschiedenen Zuständen befinden - je nachdem, welchen "Weg" man bei einem nicht-deterministischen Übergang gewählt hat.
Ein Zustand des DEA fasst all diejenigen Zustände des NEA zusammen, in denen sich der NEA zu einem bestimmten Zeitpunkt befinden könnte.
Beispiel
Youtube-Tutorial
Wer Youtube-Erklärungen mag, ist hier richtig: NEA zu DEA Transformation (Youtube).
Man muss aber mindestens 17 Minuten Zeit haben, um die beiden Teile des Tutorials anzusehen! Und um es richtig zu verstehen, muss man vermutlich ab und zu nochmal zurückspulen...
Konventionell
Das folgende Beispiel kommt von Potenzmengenkonstruktion Wikipedia und ist dort unter der CC BY-SA 3.0 veröffentlicht.
Ausgangspunkt
Übergangsfunktion des NEA
Der NEA lässt sich mithilfe einer Übergangsfunktion so beschreiben:
- [math]\displaystyle{ \mathcal{NEA} = (Q, A, \delta, S, E ) }[/math]
- Alphabet: [math]\displaystyle{ A\!\, = \{a, b\} }[/math]
- Menge der Zustände: [math]\displaystyle{ Q = \{s_0, s_1, s_2, s_3\} }[/math]
- Startzustand: [math]\displaystyle{ S = s_0 }[/math]
- Menge der Endzustände: [math]\displaystyle{ E = \{s_3\} }[/math]
- tabellarische Übertragungsfunktion [math]\displaystyle{ \delta\!\, }[/math]:
NEA | a | b |
---|---|---|
[math]\displaystyle{ s_0\!\, }[/math] | [math]\displaystyle{ \{s_0\!\,, s_1\} }[/math] | [math]\displaystyle{ \{s_0\}\!\, }[/math] |
[math]\displaystyle{ s_1\!\, }[/math] | [math]\displaystyle{ \emptyset }[/math] | [math]\displaystyle{ \{s_2\}\!\, }[/math] |
[math]\displaystyle{ s_2\!\, }[/math] | [math]\displaystyle{ \{s_3\}\!\, }[/math] | [math]\displaystyle{ \emptyset }[/math] |
[math]\displaystyle{ s_3\!\, }[/math] | [math]\displaystyle{ \emptyset }[/math] | [math]\displaystyle{ \emptyset }[/math] |
Hinweis: [math]\displaystyle{ \emptyset }[/math] ist die leere Menge.
Man sieht also:
Mit jedem Übergang kann man mehrere Zustände erreichen; diese werden als Menge von Zuständen angegeben.
Konstruktion des zugehörigen DEA
Die Zustandsmenge [math]\displaystyle{ Q\!\,' = \{S_0, S_1, S_2, S_3\} }[/math] und die Übertragungsfunktion [math]\displaystyle{ \delta\!\,' }[/math] des äquivalenten DEA ergibt sich wie folgt:
DEA | a | b |
---|---|---|
[math]\displaystyle{ S_0\!\, = \{s_0\} }[/math] | [math]\displaystyle{ \{s_0, s_1\}\!\, }[/math] | [math]\displaystyle{ \{s_0\}\!\, }[/math] |
[math]\displaystyle{ S_1\!\, = \{s_0, s_1\} }[/math] | [math]\displaystyle{ \{s_0, s_1\}\!\, }[/math] | [math]\displaystyle{ \{s_0, s_2\}\!\, }[/math] |
[math]\displaystyle{ S_2\!\, = \{s_0, s_2\} }[/math] | [math]\displaystyle{ \{s_0, s_1, s_3\}\!\, }[/math] | [math]\displaystyle{ \{s_0\}\!\, }[/math] |
[math]\displaystyle{ S_3\!\, = \{s_0, s_1, s_3\} }[/math] | [math]\displaystyle{ \{s_0, s_1\}\!\, }[/math] | [math]\displaystyle{ \{s_0, s_2\}\!\, }[/math] |
Damit ein Zustand des DEA ein Endzustand ist, muss er mindestens einen Endzustand des NEA enthalten.
(Denn im NEA reicht es für das Erkennen eines Wortes, wenn es "mindestens einen Weg gibt".
Wie kommt man darauf???
Die Übergangsfunktion baut man zeilenweise auf:
- In der 1. Zeile steht als Ausgangszustand (d.h. ganz links) eine Menge, die nur den Startzustand des NEA enthält.
- rechts daneben trägt man in den Spalten a und b ein: die Menge der Zustände, die man vom Startzustand aus mit a bzw. b erreichen kann.
- Dadurch hat sich in der Spalte a ein neuer Zustand ergeben: [math]\displaystyle{ \{s_0, s_1\}\!\, }[/math]
- Den trägt man in Zeile 2 ganz links als Ausgangszustand ein.
- Dann muss man sich überlegen, welche Zustände man von [math]\displaystyle{ s_0 }[/math] und [math]\displaystyle{ s_1 }[/math] aus im NEA erreichen kann:
- Mit dem Zeichen a die Zustände [math]\displaystyle{ s_0 }[/math] und [math]\displaystyle{ s_1 }[/math]
- mit dem Zeichen b die Zustände [math]\displaystyle{ s_0 }[/math] und [math]\displaystyle{ s_2 }[/math].
- Diese trägt man als Mengen in die Tabelle ein.
- Jetzt hat man noch einen neuen Zustand in der Spalte b: [math]\displaystyle{ \{s_0, s_2\}\!\, }[/math]
- Der ist dann ein weiterer Ausgangszustand und wird in der nächsten Zeile ganz links eingetragen.
- usw.
Endzustände des DEA
Im Beispiel ergibt sich als Menge der Endzustände [math]\displaystyle{ E\!\,' = \{S_3\} }[/math] , da nur [math]\displaystyle{ S_3\!\, = \{s_0, s_1, s_3\} }[/math] den Endzustand [math]\displaystyle{ s_3\!\, }[/math] des NEA enthält.
Übergangsfunktion des DEA
Die Übergangsfunktion des DEA lässt sich jetzt mit den Zuständen
[math]\displaystyle{ S_0\!\, = \{s_0\}, }[/math] [math]\displaystyle{ S_1\!\, = \{s_0, s_1\}, }[/math] [math]\displaystyle{ S_2\!\, = \{s_0, s_2\}, }[/math] [math]\displaystyle{ S_3\!\, = \{s_0, s_1, s_3\} }[/math]
so darstellen:
DEA | a | b |
---|---|---|
[math]\displaystyle{ S_0 }[/math] | [math]\displaystyle{ S_1 }[/math] | [math]\displaystyle{ S_0 }[/math] |
[math]\displaystyle{ S_1 }[/math] | [math]\displaystyle{ S_1 }[/math] | [math]\displaystyle{ S_2 }[/math] |
[math]\displaystyle{ S_2 }[/math] | [math]\displaystyle{ S_3 }[/math] | [math]\displaystyle{ S_0 }[/math] |
[math]\displaystyle{ S_3 }[/math] | [math]\displaystyle{ S_1 }[/math] | [math]\displaystyle{ S_2 }[/math] |
Übergangsgraph des DEA
Insgesamt ergibt sich der deterministische Automat [math]\displaystyle{ \mathcal{A} = (Q', A, \delta', s_0', E') }[/math], der folgende graphische Darstellung besitzt: